Committente:

Comune di Subiaco

Piazza S. Andrea,1 - 00028 Subiaco (RM) tel. 0774 8161 - fax 0774 822370 sito web: www.comune.subiaco.rm.it e-mail:info@comunesubiaco.com

Città metropolitana di Roma Capitale

Oggetto lavori:

ADEGUAMENTO STATICO SISMICO, ENERGETICO E FUNZIONALE PLESSO SCOLASTICO VIA FOGAZZARO, PIAZZA ROMA

	DATA
RELAZIONE SPECIALISTICA FOTOVOLTAICO	Settembre 2020
PROGETTO DEFINITIVO	AGG.
TROOLITO BLI IIIII	SCALA
Progettista: Arch. Daniele Cardoli	ELABORATO
Supporto: Ing. Vincenzo Pitta	13.0

Comune di SUBIACO (RM)

REALIZZAZIONE DI UN IMPIANTO FOTOVOLTAICO CONNESSO ALLA RETE ELETTRICA DI DISTRIBUZIONE

Potenza = 19.800 kW

Relazione tecnica

Impianto: Impianto Scuola Via Fogazzaro

Committente: Comune di Subiaco - Rappresentante Legale Daniele Cardoli

Località: Via Fogazzaro 3 - SUBIACO (RM)

SUBIACO, 23/09/2020

Il Tecnico

(Architetto Daniele Cardoli)

Responsabile Servizio Tecnico Comune di Subiaco Architetto Cardoli Daniele P.zza S. Andrea 1 SUBIACO (RM)

Copyright ACCA software S.p.A.

DATI GENERALI

Ubicazione impianto

Identificativo dell'impianto Impianto Scuola Via Fogazzaro

Indirizzo Via Fogazzaro 3

CAP - Comune **00028 SUBIACO (RM)**

Committente

Nome Cognome Daniele Cardoli

Indirizzo P.zza Sant'Andrea 1
CAP - Comune 00028 SUBIACO (RM)

Telefono **07748161** Fax **0774822370**

E-mail info@comunesubiaco.com
Ruolo Rappresentante Legale

Ragione Sociale Comune di Subiaco

 Codice Fiscale
 86000560580

 P. IVA
 02300621006

Indirizzo P.zza Sant'Andrea 1
CAP - Comune 00028 SUBIACO (RM)

Telefono **07748161** Fax **0774822370**

E-mail info@comunesubiaco.com

Tecnico

Ragione Sociale Responsabile Servizio Tecnico Comune di Subiaco

Nome Cognome Daniele Cardoli
Oualifica Architetto

Indirizzo P.zza S. Andrea 1

PREMESSA

Valenza dell'iniziativa

Con la realizzazione dell'impianto, denominato Impianto Scuola Via Fogazzaro", si intende conseguire un significativo risparmio energetico per la struttura servita, mediante il ricorso alla fonte energetica rinnovabile rappresentata dal Sole. Il ricorso a tale tecnologia nasce dall'esigenza di coniugare:

- la compatibilità con esigenze architettoniche e di tutela ambientale;
- nessun inquinamento acustico;
- un risparmio di combustibile fossile;
- una produzione di energia elettrica senza emissioni di sostanze inquinanti.

Attenzione per l'ambiente

Ad oggi, la produzione di energia elettrica è per la quasi totalità proveniente da impianti termoelettrici che utilizzano combustibili sostanzialmente di origine fossile. Quindi, considerando l'energia stimata come produzione del primo anno, 21 883.51 kWh, e la perdita di efficienza annuale, 0.90 %, le considerazioni successive valgono per il tempo di vita dell'impianto pari a 20 anni.

Risparmio sul combustibile

Un utile indicatore per definire il risparmio di combustibile derivante dall'utilizzo di fonti energetiche rinnovabili è il fattore di conversione dell'energia elettrica in energia primaria [TEP/MWh].

Questo coefficiente individua le T.E.P. (Tonnellate Equivalenti di Petrolio) necessarie per la realizzazione di 1 MWh di energia, ovvero le TEP risparmiate con l'adozione di tecnologie fotovoltaiche per la produzione di energia elettrica.

Risparmio di combustibile

Risparmio di combustibile in	TEP
Fattore di conversione dell'energia elettrica in energia primaria [TEP/MWh]	0.187
TEP risparmiate in un anno	4.09
TEP risparmiate in 20 anni	75.21

Fonte dati: Delibera EEN 3/08, art. 2

Emissioni evitate in atmosfera

Inoltre, l'impianto fotovoltaico consente la riduzione di emissioni in atmosfera delle sostanze che hanno effetto inquinante e di quelle che contribuiscono all'effetto serra.

			Emissioni	evitate in atmosfera
Emissioni evitate in atmosfera di	CO ₂	SO ₂	NOx	Polveri
Emissioni specifiche in atmosfera [g/kWh]	474.0	0.373	0.427	0.014
Emissioni evitate in un anno [kg]	10 372.78	8.16	9.34	0.31
Emissioni evitate in 20 anni [kg]	190 640.43	150.02	171.74	5.63

Fonte dati: Rapporto ambientale ENEL 2013

Normativa di riferimento

Gli impianti devono essere realizzati a regola d'arte, come prescritto dalle normative vigenti, ed in particolare dal D.M. 22 gennaio 2008, n. 37.

Le caratteristiche degli impianti stessi, nonché dei loro componenti, devono essere in accordo con le norme di legge e di regolamento vigenti ed in particolare essere conformi:

- alle prescrizioni di autorità locali, comprese quelle dei VVFF;
- alle prescrizioni e indicazioni della Società Distributrice di energia elettrica;
- alle prescrizioni del gestore della rete;
- alle norme CEI (Comitato Elettrotecnico Italiano).

SITO DI INSTALLAZIONE

Il dimensionamento energetico dell'impianto fotovoltaico connesso alla rete del distributore è stato effettuato tenendo conto, oltre che della disponibilità economica, di:

- disponibilità di spazi sui quali installare l'impianto fotovoltaico;
- disponibilità della fonte solare;
- fattori morfologici e ambientali (ombreggiamento e albedo).

Disponibilità di spazi sui quali installare l'impianto fotovoltaico

La descrizione del sito in cui verrà installato l'impianto fotovoltaico è riportata di seguito.

Il progetto dell'impianto fotovoltaico, da realizzare sulla copertura dell'edificio scolastico di Via Fogazzaro sito nel Comune di Subiaco (RM), foglio di mappa n. 31 - particella n. 268, oggetto del presente documento, si propone di produrre energia elettrica da fonte rinnovabile (energia solare) utilizzando al meglio i meccanismi di incentivazione statali ed il supporto

Disponibilità della fonte solare

Irradiazione giornaliera media mensile sul piano orizzontale

La disponibilità della fonte solare per il sito di installazione è verificata utilizzando i dati UNI 10349:2016 - Stazione di rilevazione: Frosinone" relativi a valori giornalieri medi mensili della irradiazione solare sul piano orizzontale.

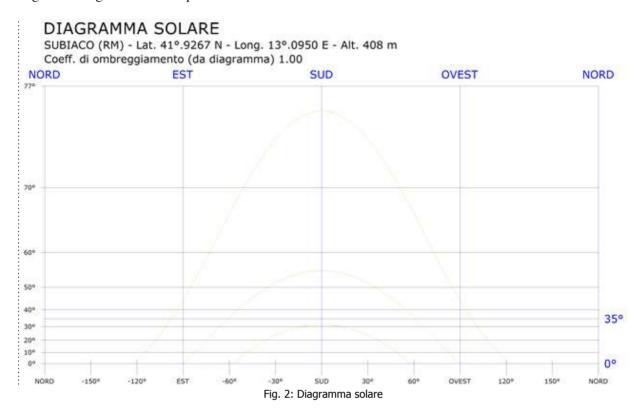
Per la località sede dell'intervento, ovvero il comune di SUBIACO (RM) avente latitudine 41°.9267 N, longitudine 13°.0950 E e altitudine di 408 m.s.l.m.m., i valori giornalieri medi mensili dell'irradiazione solare sul piano orizzontale stimati sono pari a:

Irradiazione giornaliera media mensile sul piano orizzontale [MJ/m²]

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
5.50	8.20	11.90	16.30	20.40	24.20	23.50	20.70	16.30	10.90	6.30	4.40

Fonte dati: UNI 10349:2016 - Stazione di rilevazione: Frosinone

Fig. 1: Irradiazione giornaliera media mensile sul piano orizzontale [MJ/m²]- Fonte dati: UNI 10349:2016 - Stazione di rilevazione: Frosinone


Quindi, i valori della irradiazione solare annua sul piano orizzontale sono pari a **5 138.90 MJ/m²** (Fonte dati: UNI 10349:2016 - Stazione di rilevazione: Frosinone).

Fattori morfologici e ambientali

Ombreggiamento

Gli effetti di schermatura da parte di volumi all'orizzonte, dovuti ad elementi naturali (rilievi, alberi) o artificiali (edifici), determinano la riduzione degli apporti solari e il tempo di ritorno dell'investimento.

Il Coefficiente di Ombreggiamento, funzione della morfologia del luogo, è pari a **1.00**. Di seguito il diagramma solare per il comune di SUBIACO:

Albedo

Per tener conto del plus di radiazione dovuta alla riflettanza delle superfici della zona in cui è inserito l'impianto, si sono stimati i valori medi mensili di albedo, considerando anche i valori presenti nella norma UNI 8477:

Valori di albedo medio mensile

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20

L'albedo medio annuo è pari a 0.20.

PROCEDURE DI CALCOLO

Criterio generale di progetto

Il principio progettuale normalmente utilizzato per un impianto fotovoltaico è quello di massimizzare la captazione della radiazione solare annua disponibile.

Nella generalità dei casi, il generatore fotovoltaico deve essere esposto alla luce solare in modo ottimale, scegliendo prioritariamente l'orientamento a Sud ed evitando fenomeni di ombreggiamento. In funzione degli eventuali vincoli architettonici della struttura che ospita il generatore stesso, sono comunque adottati orientamenti diversi e sono ammessi fenomeni di ombreggiamento, purché adeguatamente valutati.

Perdite d'energia dovute a tali fenomeni incidono sul costo del kWh prodotto e sul tempo di ritorno dell'investimento.

Dal punto di vista dell'inserimento architettonico, nel caso di applicazioni su coperture a falda, la scelta dell'orientazione e dell'inclinazione va effettuata tenendo conto che è generalmente opportuno mantenere il piano dei moduli parallelo o addirittura complanare a quello della falda stessa. Ciò in modo da non alterare la sagoma dell'edificio e non aumentare l'azione del vento sui moduli stessi. In questo caso, è utile favorire la circolazione d'aria fra la parte posteriore dei moduli e la superficie dell'edificio, al fine di limitare le perdite per temperatura.

Criterio di stima dell'energia prodotta

L'energia generata dipende:

- dal sito di installazione (latitudine, radiazione solare disponibile, temperatura, riflettanza della superficie antistante i moduli);
- dall'esposizione dei moduli: angolo di inclinazione (Tilt) e angolo di orientazione (Azimut);
- da eventuali ombreggiamenti o insudiciamenti del generatore fotovoltaico;
- dalle caratteristiche dei moduli: potenza nominale, coefficiente di temperatura, perdite per disaccoppiamento o mismatch;
- dalle caratteristiche del BOS (Balance Of System).

Il valore del BOS può essere stimato direttamente oppure come complemento all'unità del totale delle perdite, calcolate mediante la seguente formula:

Totale perdite [%] = [1 ce(1 cea ceb) x (1 cec - d) x (1 cee) x (1 cef)] + g

per i seguenti valori:

- a Perdite per riflessione.
- b Perdite per ombreggiamento.
- c Perdite per mismatching.
- d Perdite per effetto della temperatura.
- e Perdite nei circuiti in continua.
- f Perdite negli inverter.
- g Perdite nei circuiti in alternata.

Criterio di verifica elettrica

In corrispondenza dei valori minimi della temperatura di lavoro dei moduli (-10 °C) e dei valori massimi di lavoro degli stessi (70 °C) sono verificate le seguenti disuguaglianze:

TENSIONI MPPT

Tensione nel punto di massima potenza, Vm, a 70 °C maggiore o uguale alla Tensione MPPT minima (Vmppt min).

Tensione nel punto di massima potenza, Vm, a -10 °C minore o uguale alla Tensione MPPT massima (Vmppt max).

I valori di MPPT rappresentano i valori minimo e massimo della finestra di tensione utile per la ricerca del punto di funzionamento alla massima potenza.

TENSIONE MASSIMA

Tensione di circuito aperto, Voc, a -10 °C minore o uguale alla tensione massima di ingresso dell'inverter.

TENSIONE MASSIMA MODULO

Tensione di circuito aperto, Voc, a -10 °C minore o uguale alla tensione massima di sistema del modulo.

CORRENTE MASSIMA

Corrente massima (corto circuito) generata, Isc, minore o uguale alla corrente massima di ingresso dell'inverter.

DIMENSIONAMENTO

Dimensionamento compreso tra il 70 % e 120 %.

Per dimensionamento si intende il rapporto percentuale tra la potenza nominale dell'inverter e la potenza del generatore fotovoltaico a esso collegato (nel caso di sottoimpianti MPPT, il dimensionamento è verificato per il sottoimpianto MPPT nel suo insieme).

DIMENSI ONAMENTO DELL'I MPI ANTO

Impianto Impianto Scuola Via Fogazzaro

L'impianto, denominato Impianto Scuola Via Fogazzaro" (codice POD \$Empty_IMPPOD\$), è di tipo grid-connected, la tipologia di allaccio è: trifase in bassa tensione.

Ha una potenza totale pari a **19.800 kW** e una produzione di energia annua pari a **21 883.51 kWh** (equivalente a **1 105.23 kWh/kW**), derivante da 60 moduli che occupano una superficie di 116.40 m², ed è composto da 2 generatori.

Scheda tecnica dell'impianto

Dati generali	
Committente	Comune di Subiaco - Rappresentante Legale Daniele Cardoli
Indirizzo	Via Fogazzaro 3
CAP Comune (Provincia)	00028 SUBIACO (RM)
Latitudine	41°.9267 N
Longitudine	13°.0950 E
Altitudine	408 m
Irradiazione solare annua sul piano orizzontale	5 138.90 MJ/m ²
Coefficiente di ombreggiamento	1.00

Dati tecnici				
Superficie totale moduli	116.40 m²			
Numero totale moduli	60			
Numero totale inverter	1			
Energia totale annua	21 883.51 kWh			
Potenza totale	19.800 kW			
Potenza fase L1	6.600 kW			
Potenza fase L2	6.600 kW			
Potenza fase L3	6.600 kW			
Energia per kW	1 105.23 kWh/kW			
Sistema di accumulo	Assente			
Capacità di accumulo utile	-			
BOS	74.97 %			

Energia prodotta

L'energia totale annua prodotta dall'impianto è **21 883.51 kWh.** Nel grafico si riporta l'energia prodotta mensilmente:

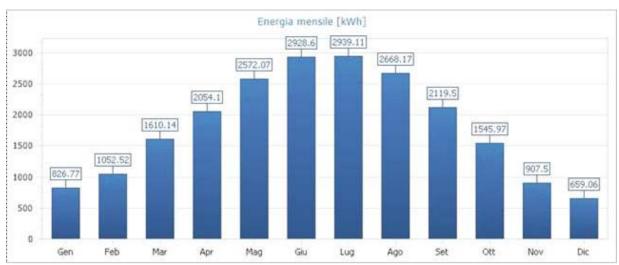


Fig. 3: Energia mensile prodotta dall'impianto

Specifiche degli altri componenti dell'impianto Impianto Scuola Via Fogazzaro

Posizionamento dei moduli

I moduli fotovoltaici sono fissati sulla copertura per mezzo di apposite strutture in grado di consentire il montaggio e lo smontaggio per ciascun modulo, indipendentemente dalla presenza o meno di quelli contigui.

Cablaggio elettrico

Le sezioni dei cavi per i vari collegamenti sono tali da assicurare una durata di vita soddisfacente dei conduttori e degli isolamenti sottoposti agli effetti termici causati dal passaggio della corrente elettrica per periodi prolungati e in condizioni ordinarie di esercizio.Per i collegamenti tra i moduli fotovoltaici e i quadri di campo sono stati utilizzati cavi unipolari in gomma di sezione 6,0 mmq del tipo FG7R 06/1kv.Per i collegamenti tra l'uscita degli inverter e il quadro c.a. di interfaccia sono stati utilizzati cavi unipolari adatti alla connessione in c.a.

Impianto di messa a terra

L'impianto fotovoltaico non aumenta la probabilità di fulminazione diretta sulla struttura.L'abbattersi di scariche atmosferiche in prossimità dell'impianto può provocare il concatenamento del flusso magnetico associato alla corrente di fulmine con i circuiti dell'impianto fotovoltaico, così da provocare sovratensioni in grado di mettere fuori uso i componenti tra cui, in particolare, gli inverter.I morsetti degli inverter risultano protetti internamente con varistori a pastiglia. Tuttavia, la notevole estensione dei collegamenti ha suggerito, in fase di progetto, di rinforzare tale protezione con l'inserzione di dispositivi SPD a varistore sulla sezione c.c. dell'impianto in prossimità del generatore fotovoltaico.

Sistema di accumulo

Non Presente

Protezioni

La protezione contro i contatti diretti è assicurata dall'utilizzo dei seguenti accorgimenti:- utilizzo di componenti dotati di marchio CE (Direttiva CEE 73/23);- utilizzo di componenti aventi un idoneo grado di protezione alla penetrazione di solidi e liquidi;- collegamenti effettuati utilizzando cavo rivestito con guaina esterna protettiva, idoneo per la tensione nominale utilizzata e alloggiato in condotto portacavi (canale o tubo a seconda del tratto) idoneo allo scopo. Alcuni brevi tratti di collegamento tra i moduli fotovoltaici non risultano alloggiati in tubi o canali. Questi collegamenti, tuttavia, essendo protetti dai moduli stessi, non sono soggetti a sollecitazioni meccaniche di alcun tipo, ne risultano ubicati in luoghi ove sussistano rischi di danneggiamento. La protezione contro i contatti indiretti (per la parte in CA) è, in questo caso, assicurata dal seguente accorgimento:- collegamento al conduttore di protezione PE di tutte le masse, ad eccezione degli involucri metallici delle apparecchiature di Classe II;- verifica, da eseguire in corso d'opera o in fase di collaudo, che i dispositivi di protezione inseriti nel quadro di distribuzione B.T. intervengano in caso di primo guasto verso terra con un ritardo massimo di 0,4 secondi, oppure che intervengano entro 5 secondi ma la tensione sulle masse in tale periodo non superi i 50 V.La protezione nei confronti dei contatti indiretti (per la parte in CC) è in questo caso assicurata dalle seguenti caratteristiche dei componenti e del circuito:- protezione differenziale Idn < 30 mA- collegamento al conduttore PE delle carcasse metalliche.

Il dispositivo di interfaccia deve provocare il distacco dell'intero sistema di generazione in caso di guasto sulla rete elettrica. Il riconoscimento di eventuali anomalie sulla rete avviene considerando come anormali le condizioni di funzionamento che fuoriescono da una determinata finestra di tensione e frequenza.La protezione offerta dal dispositivo di interfaccia impedisce, tra l'altro, che l'inverter continui a funzionare, con particolari configurazioni di carico, anche nel caso di black-out esterno.Questo fenomeno, detto funzionamento in isola, deve essere assolutamente evitato, soprattutto perché può tradursi in condizioni di pericolo per il personale addetto alla ricerca e alla riparazione dei guasti.

Fig. 4: Immagine impianto

Tavola 1

Il posizionamento dei moduli è mostrato nell'immagine seguente:

Fig. 5: Posizionamento dei moduli nella tavola Tavola 1

Sottoimpianto MPPT Sottoimpianto MPPT1

Il sottoimpianto MPPT denominato —Sottoimpianto MPPT1", ha una potenza pari a **19.800 kW** e una produzione di energia annua pari a **21 883.51 kWh**, derivante da 2 generatori, con un numero totale di moduli pari a 60 e una superficie totale dei moduli di 116.40 m². Il sottoimpianto MPPT ha una connessione trifase.

Scheda tecnica

Dati generali					
Potenza totale	19.800 kW				
Energia totale annua	21 883.51 kWh				
Numero totale moduli	60				
Superficie totale moduli	116.40 m²				

Inverter				
Marca œModello	FRONIUS - SYMO 17.5-3-M			
Numero di MPPT	2			
Dimensionamento inverter (compreso tra 70 % e 120 %)	88.38 % (VERIFICATO)			
Tipo fase	Trifase			

Generatore MPPT Generatore MPPT1

Il generatore denominato —Generatore MPPT1" ha una potenza pari a **9.900 kW** e una produzione di energia annua pari a **11 567.30 kWh**, derivante da 30 moduli con una superficie totale dei moduli di 58.20 m².

Dati generali				
Posizionamento dei moduli	Complanare alle superfici			
Struttura di sostegno	Fissa			
Inclinazione dei moduli (Tilt)	20°			
Orientazione dei moduli (Azimut)	0°			
Irradiazione solare annua sul piano dei moduli	1 558.25 kWh/m²			
Numero superfici disponibili	1			
Estensione totale disponibile	101.31 m ²			
Estensione totale utilizzata	101.31 m ²			
Potenza totale	9.900 kW			
Energia totale annua	11 567.30 kWh			

Modulo					
Marca œModello	AMERISOLAR - AS-6M 330 50mm				
Numero totale moduli	30				
Superficie totale moduli	58.20 m ²				

Configurazione inverter		
МРРТ	Numero di moduli	Stringhe per modulo
1	30	2 x 15

Verifiche elettriche MPPT 1

In corrispondenza dei valori minimi della temperatura di lavoro dei moduli (-10 °C) e dei valori massimi di lavoro degli stessi (70 °C) sono verificate le seguenti disuguaglianze:

TENSIONI MPPT	
Vm a 70 °C (459.81 V) maggiore di Vmppt min. (370.00 V)	VERIFICATO
Vm a -10 °C (642.37 V) minore di Vmppt max. (800.00 V)	VERIFICATO

TENSIONE MASSIMA	
Voc a -10 °C (771.37 V) inferiore alla tensione max. dell'ingresso MPPT (1 000.00 V)	VERIFICATO

TENSIONE MASSIMA MODULO	
Voc a -10 °C (771.37 V) inferiore alla tensione max. di sistema del modulo (1 000.00 V)	VERIFICATO

CORRENTE MASSIMA	
Corrente max. generata (18.42 A) inferiore alla corrente max. dell'ingresso MPPT (33.00 A)	VERIFICATO

Generatore MPPT Generatore MPPT2

Il generatore denominato —Generatore MPPT2" ha una potenza pari a **9.900 kW** e una produzione di energia annua pari a **10 316.21 kWh**, derivante da 30 moduli con una superficie totale dei moduli di 58.20 m².

Dati generali			
Posizionamento dei moduli	Complanare alle superfici		
Struttura di sostegno	Fissa		
Inclinazione dei moduli (Tilt)	20°		
Orientazione dei moduli (Azimut)	90°		
Irradiazione solare annua sul piano dei moduli	1 389.84 kWh/m²		
Numero superfici disponibili	1		
Estensione totale disponibile	89.13 m ²		
Estensione totale utilizzata	89.13 m ²		
Potenza totale	9.900 kW		
Energia totale annua	10 316.21 kWh		

Modulo		
Marca œModello	AMERISOLAR - AS-6M 330 50mm	
Numero totale moduli	30	
Superficie totale moduli	58.20 m ²	

Configurazione inverter		
МРРТ	Numero di moduli	Stringhe per modulo
2	30	2 x 15

Verifiche elettriche MPPT 2

In corrispondenza dei valori minimi della temperatura di lavoro dei moduli (-10 °C) e dei valori massimi di lavoro degli stessi (70 °C) sono verificate le seguenti disuguaglianze:

TENSIONI MPPT	
Vm a 70 °C (459.81 V) maggiore di Vmppt min. (370.00 V)	VERIFICATO
Vm a -10 °C (642.37 V) minore di Vmppt max. (800.00 V)	VERIFICATO

TENSIONE MASSIMA	
Voc.a -10 °C (771.37 V) inferiore alla tensione max, dell'ingresso MPPT (1.000.00 V)	VERTETCATO

TENSIONE MASSIMA MODULO	
Voc a -10 °C (771.37 V) inferiore alla tensione max. di sistema del modulo (1 000.00 V)	VERIFICATO

CORRENTE MASSIMA	
Corrente max. generata (18.42 A) inferiore alla corrente max. dell'ingresso MPPT (27.00 A)	VERIFICATO

Schema elettrico

Il dispositivo di interfaccia è esterno ai convertitori ed è costituito da: Contattore Nell'impianto è previsto un dispositivo di rincalzo al DDI (dispositivo di interfaccia).

Cavi

				Risultati		
Descrizione	Designazione	Sezione (mm²)	Lung. (m)	Corrente (A)	Portata (A)	Caduta di tensione (%)
Rete - Quadro generale	FG7R 0.6/1 kV	10.0	1.00	28.58	60.00	0.03
Quadro generale - Quadro fotovoltaico	FG7R 0.6/1 kV	10.0	1.00	28.58	60.00	0.03
Quadro fotovoltaico - I 1	FG7R 0.6/1 kV	6.0	50.00	28.58	44.00	2.60
I 1 - MPPT 1		6.0	1.00	17.60	38.00	0.02
I 1 - Quadro di campo 1	H1Z2Z2-K	4.0	40.00	17.60	42.00	1.58
Quadro di campo 1 - S 1	H1Z2Z2-K	2.5	2.00	8.80	31.00	0.06
Quadro di campo 1 - S 2	H1Z2Z2-K	2.5	2.00	8.80	31.00	0.06
I 1 - MPPT 2		6.0	1.00	17.60	38.00	0.02
I 1 - Quadro di campo 2	H1Z2Z2-K	4.0	40.00	17.60	42.00	1.58
Quadro di campo 2 - S 3	H1Z2Z2-K	2.5	2.00	8.80	31.00	0.06
Quadro di campo 2 - S 4	H1Z2Z2-K	2.5	2.00	8.80	31.00	0.06

Quadri

Quadro generale		
SPD uscita presente		
Protezione sugli ingressi		
Ingresso	Dispositivo	
Quadro fotovoltaico	Interruttore magnetotermico	

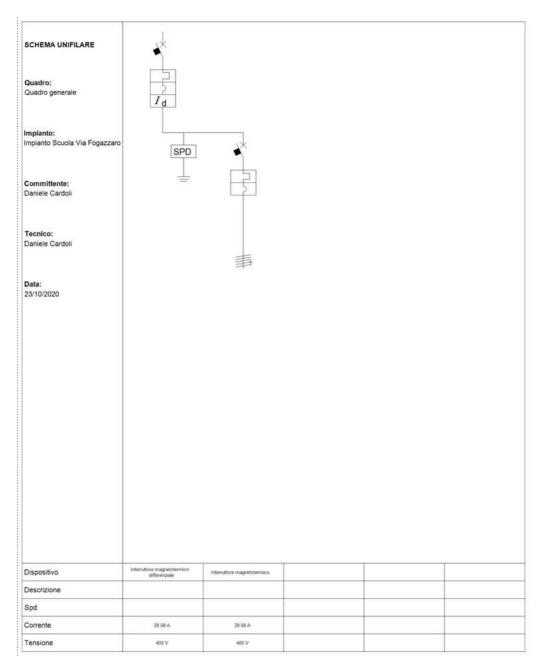


Fig. 6: Schema unifilare quadro "Quadro generale"

Quadro fotovoltaico		
SPD uscita presente		
Protezione sugli ingressi		
Ingresso	Dispositivo	
I 1	Interruttore magnetotermico	

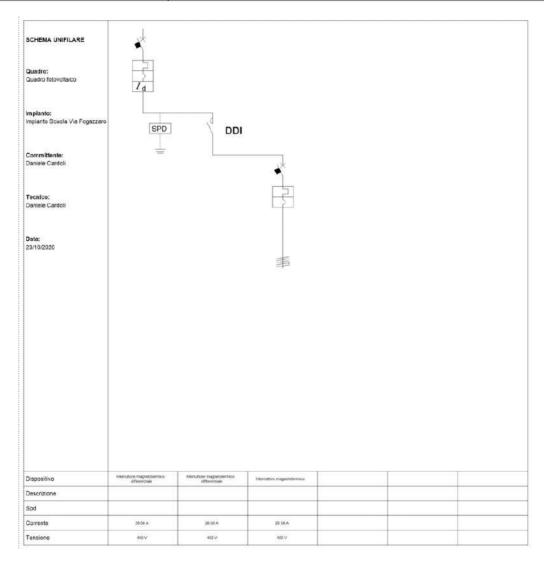


Fig. 7: Schema unifilare quadro "Quadro fotovoltaico"

Quadro di campo 1		
Protezione in uscita: Interruttore magnetotermico		
SPD uscita presente		
Protezione sugli ingressi		
Ingresso S 1: Interruttore magnetotermico		
SPD presente		
Ingresso S 2: Interruttore magnetotermico		
SPD presente		

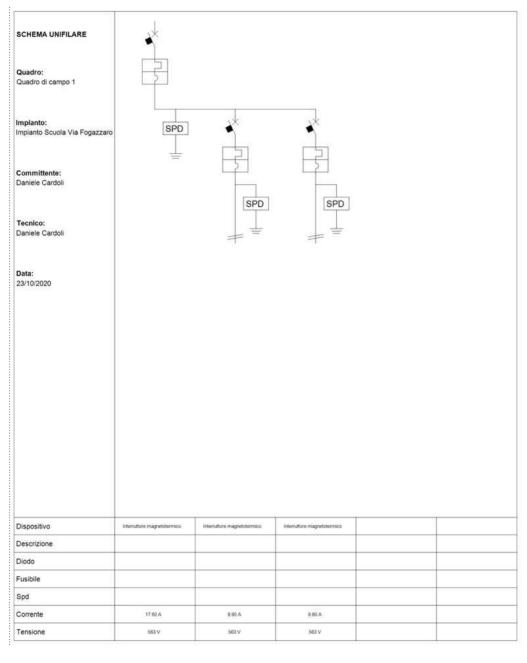


Fig. 8: Schema unifilare quadro "Quadro di campo 1"

Quadro di campo 2			
Protezione in uscita: Interruttore magnetotermico			
SPD uscita presente			
Protezione sugli ingressi			
Ingresso S 3: Interruttore magnetotermico			
SPD presente			
Ingresso S 4: Interruttore magnetotermico			
SPD presente			

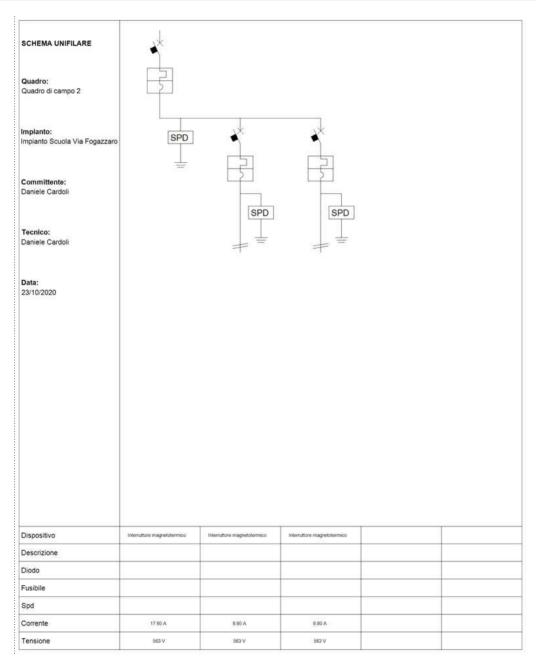


Fig. 9: Schema unifilare quadro "Quadro di campo 2"

Il disegno successivo riporta lo schema unifilare dell'impianto, in cui sono messi in evidenza i sottosistemi e le apparecchiature che ne fanno parte.

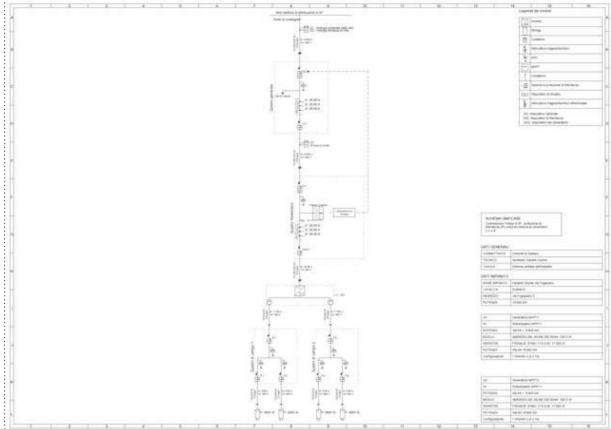


Fig. 10: Schema elettrico unifilare dell'impianto

Riepilogo potenze per fase			
Generatore / sottoimpianto	L1	L2	L3
Sottoimpianto MPPT1	6.600 kW	6.600 kW	6.600 kW
Totale	6.600 kW	6.600 kW	6.600 kW

La differenza fra la potenza installata sulla fase con più generazione e quella con meno generazione risulta pari a: **0.000** kW.

NORMATIVA

Gli impianti fotovoltaici e i relativi componenti devono rispettare, ove di pertinenza, le prescrizioni contenute nelle seguenti norme di riferimento, comprese eventuali varianti, aggiornamenti ed estensioni emanate successivamente dagli organismi di normazione citati.

Si applicano inoltre i documenti tecnici emanati dai gestori di rete riportanti disposizioni applicative per la connessione di impianti fotovoltaici collegati alla rete elettrica e le prescrizioni di autorità locali, comprese quelle dei VVFF.

Leggi e decreti

Normativa generale

Decreto Legislativo n. 504 del 26-10-1995, aggiornato 1-06-2007: Testo Unico delle disposizioni legislative concernenti le imposte sulla produzione e sui consumi e relative sanzioni penali e amministrative.

Decreto Legislativo n. 387 del 29-12-2003: attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità.

Legge n. 239 del 23-08-2004: riordino del settore energetico, nonché delega al Governo per il riassetto delle disposizioni vigenti in materia di energia.

Decreto Legislativo n. 192 del 19-08-2005: attuazione della direttiva 2002/91/CE relativa al rendimento energetico nell'edilizia.

Decreto Legislativo n. 311 del 29-12-2006: disposizioni correttive ed integrative al decreto legislativo 19 agosto 2005, n. 192, recante attuazione della direttiva 2002/91/CE, relativa al rendimento energetico nell'edilizia.

Decreto Legislativo n. 115 del 30-05-2008: attuazione della direttiva 2006/32/CE relativa all'efficienza degli usi finali dell'energia e i servizi energetici e abrogazione della direttiva 93/76/CEE.

Decreto Legislativo n. 56 del 29-03-2010: modifiche e integrazioni al decreto 30 maggio 2008, n. 115.

Decreto del presidente della repubblica n. 59 del 02-04-2009: regolamento di attuazione dell'articolo 4, comma 1, lettere a) e b), del decreto legislativo 19 agosto 2005, n. 192, concernente attuazione della direttiva 2002/91/CE sul rendimento energetico in edilizia.

Decreto Legislativo n. 26 del 2-02-2007: attuazione della direttiva 2003/96/CE che ristruttura il quadro comunitario per la tassazione dei prodotti energetici e dell'elettricità.

Decreto Legge n. 73 del 18-06-2007: testo coordinato del Decreto Legge 18 giugno 2007, n. 73.

Decreto 2-03-2009: disposizioni in materia di incentivazione della produzione di energia elettrica mediante conversione fotovoltaica della fonte solare.

Legge n. 99 del 23 luglio 2009: disposizioni per lo sviluppo e l'internazionalizzazione delle imprese, nonchè in materia di energia.

Legge 13 Agosto 2010, n. 129 (GU n. 192 del 18-8-2010): Conversione in legge, con modificazioni, del decreto-legge 8 luglio 2010, n. 105, recante misure urgenti in materia di energia. Proroga di termine per l'esercizio di delega legislativa in materia di riordino del sistema degli incentivi. (Art. 1-septies - Ulteriori disposizioni in materia di impianti per la produzione di energia da fonti rinnovabili).

Decreto legislativo del 3 marzo 2011, n. 28: Attuazione della direttiva 2009/28/CE sulla promozione dell'uso dell'energia da fonti rinnovabili.

Decreto legge del 22 giugno 2012, n. 83: misure urgenti per la crescita del Paese.

Legge 11 agosto 2014, n. 116: conversione in legge, con modificazioni, del decreto-legge 24 giugno 2014, n. 91, recante disposizioni urgenti per il settore agricolo, la tutela ambientale e l'efficientamento energetico dell'edilizia scolastica e universitaria, il rilancio e lo sviluppo delle imprese, il contenimento dei costi gravanti sulle tariffe elettriche, nonche' per la definizione immediata di adempimenti derivanti dalla normativa europea. (GU Serie Generale n.192 del 20-8-2014 - Suppl. Ordinario n. 72).

Sicurezza

D.Lgs. 81/2008: (testo unico della sicurezza): misure di tutela della salute e della sicurezza nei luoghi di lavoro e succ. mod. e int.

DM 37/2008: sicurezza degli impianti elettrici all'interno degli edifici.

Ministero dell'interno

- "Guida per l'installazione degli impianti fotovoltaici" DCPREV, prot.5158 Edizione 2012.
- "Guida per l'installazione degli impianti fotovoltaici" Nota DCPREV, prot. 1324 Edizione 2012.
- "Guida per l'installazione degli impianti fotovoltaici" Chiarimenti alla Nota DCPREV, prot.1324 "Guida per l'installazione degli impianti fotovoltaici œEdizione 2012".

Secondo Conto Energia

Decreto 19-02-2007: criteri e modalità per incentivare la produzione di energia elettrica mediante conversione fotovoltaica della fonte solare, in attuazione dell'articolo 7 del decreto legislativo 29 dicembre 2003, n. 387.

Legge n. 244 del 24-12-2007 (Legge finanziaria 2008): disposizioni per la formazione del bilancio annuale e pluriennale dello Stato.

Decreto Attuativo 18-12-2008 - Finanziaria 2008

DM 02/03/2009: disposizioni in materia di incentivazione della produzione di energia elettrica mediante conversione fotovoltaica della fonte solare.

Terzo Conto Energia

Decreto 6 agosto 2010: incentivazione della produzione di energia elettrica mediante conversione fotovoltaica della fonte solare.

Quarto Conto Energia

Decreto 5 maggio 2011: incentivazione della produzione di energia elettrica da impianti solari fotovoltaici.

Quinto Conto Energia

Decreto 5 luglio 2012: attuazione dell'art. 25 del decreto legislativo 3 marzo 2011, n. 28, recante incentivazione della produzione di energia elettrica da impianti solari fotovoltaici.

Deliberazione 12 luglio 2012 292/2012/R/EFR: determinazione della data in cui il costo cumulato annuo degli incentivi spettanti agli impianti fotovoltaici ha raggiunto il valore annuale di 6 miliardi di euro e della decorrenza delle modalità di incentivazione disciplinate dal decreto del ministro dello sviluppo economico, di concerto con il ministro dell'ambiente e della tutela del territorio e del mare 5 luglio 2012.

Norme Tecniche

Normativa fotovoltaica

CEI 82-25 Edizione 09-2010: guida alla realizzazione di sistemi di generazione fotovoltaica collegati alle reti elettriche di Media e Bassa Tensione.

CEI 82-25; V2 Edizione 10-2012: guida alla realizzazione di sistemi di generazione fotovoltaica collegati alle reti elettriche di Media e Bassa Tensione.

CEI EN 60904-1(CEI 82-1): dispositivi fotovoltaici Parte 1: Misura delle caratteristiche fotovoltaiche tensione-corrente.

CEI EN 60904-2 (CEI 82-2): dispositivi fotovoltaici - Parte 2: Prescrizione per le celle fotovoltaiche di riferimento.

CEI EN 60904-3 (**CEI 82-3**): dispositivi fotovoltaici - Parte 3: Principi di misura per sistemi solari fotovoltaici per uso terrestre e irraggiamento spettrale di riferimento.

CEI EN 61215 (**CEI 82-8**): moduli fotovoltaici in silicio cristallino per applicazioni terrestri. Qualifica del progetto e omologazione del tipo.

CEI EN 61646 (82-12): moduli fotovoltaici (FV) a film sottile per usi terrestri - Qualifica del progetto e approvazione di tipo.

CEI EN 61724 (CEI 82-15): rilievo delle prestazioni dei sistemi fotovoltaici - Linee guida per la misura, lo scambio e l'analisi dei dati.

CEI EN 61730-1 (**CEI 82-27**): qualificazione per la sicurezza dei moduli fotovoltaici (FV) - Parte 1: Prescrizioni per la costruzione.

CEI EN 61730-2 (**CEI 82-28**): qualificazione per la sicurezza dei moduli fotovoltaici (FV) - Parte 2: Prescrizioni per le prove.

CEI EN 62108 (82-30): moduli e sistemi fotovoltaici a concentrazione (CPV) - Qualifica di progetto e approvazione di tipo.

CEI EN 62093 (CEI 82-24): componenti di sistemi fotovoltaici - moduli esclusi (BOS) - Qualifica di progetto in condizioni ambientali naturali.

CEI EN 50380 (CEI 82-22): fogli informativi e dati di targa per moduli fotovoltaici.

CEI EN 50521 (CEI 82-31): connettori per sistemi fotovoltaici - Prescrizioni di sicurezza e prove.

CEI EN 50524 (CEI 82-34): fogli informativi e dati di targa dei convertitori fotovoltaici.

CEI EN 50530 (CEI 82-35): rendimento globale degli inverter per impianti fotovoltaici collegati alla rete elettrica.

EN 62446 (**CEI 82-38**): grid connected photovoltaic systems - Minimum requirements for system documentation, commissioning tests and inspection.

CEI 20-91: cavi elettrici con isolamento e guaina elastomerici senza alogeni non propaganti la fiamma con tensione nominale non superiore a 1 000 V in corrente alternata e 1 500 V in corrente continua per applicazioni in impianti fotovoltaici.

UNI 8477: energia solare ceCalcolo degli apporti per applicazioni in edilizia ceValutazione dell'energia raggiante ricevuta

UNI 10349: riscaldamento e raffrescamento degli edifici. Dati climatici.

UNI/TR 11328-1:2009: "Energia solare - Calcolo degli apporti per applicazioni in edilizia - Parte 1: Valutazione dell'energia raggiante ricevuta".

Altra Normativa sugli impianti elettrici

CEI 0-2: guida per la definizione della documentazione di progetto per impianti elettrici.

CEI 0-16: regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti AT ed MT delle imprese distributrici di energia elettrica.

CEI 0-21: regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti BT delle imprese distributrici di energia elettrica.

CEI 11-20: impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di I e II categoria.

CEI EN 50438 (CT 311-1): prescrizioni per la connessione di micro-generatori in parallelo alle reti di distribuzione pubblica in bassa tensione.

CEI 64-8: impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua.

CEI EN 60099-1 (CEI 37-1): scaricatori - Parte 1: Scaricatori a resistori non lineari con spinterometri per sistemi a corrente alternata

CEI EN 60439 (CEI 17-13): apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT).

CEI EN 60445 (CEI 16-2): principi base e di sicurezza per l'interfaccia uomo-macchina, marcatura e identificazione - Individuazione dei morsetti e degli apparecchi e delle estremità dei conduttori designati e regole generali per un sistema alfanumerico.

CEI EN 60529 (CEI 70-1): gradi di protezione degli involucri (codice IP).

CEI EN 60555-1 (CEI 77-2): disturbi nelle reti di alimentazione prodotti da apparecchi elettrodomestici e da equipaggiamenti elettrici simili - Parte 1: Definizioni.

CEI EN 61000-3-2 (**CEI 110-31**): compatibilità elettromagnetica (EMC) - Parte 3: Limiti - Sezione 2: Limiti per le emissioni di corrente armonica (apparecchiature con corrente di ingresso " = 16 A per fase).

CEI EN 62053-21 (CEI 13-43): apparati per la misura dell'energia elettrica (c.a.) - Prescrizioni particolari - Parte 21: Contatori statici di energia attiva (classe 1 e 2).

CEI EN 62053-23 (CEI 13-45): apparati per la misura dell'energia elettrica (c.a.) - Prescrizioni particolari - Parte 23: Contatori statici di energia reattiva (classe 2 e 3).

CEI EN 50470-1 (CEI 13-52): apparati per la misura dell'energia elettrica (c.a.) - Parte 1: Prescrizioni generali, prove e condizioni di prova - Apparato di misura (indici di classe A, B e C).

CEI EN 50470-3 (**CEI 13-54**): apparati per la misura dell'energia elettrica (c.a.) - Parte 3: Prescrizioni particolari - Contatori statici per energia attiva (indici di classe A, B e C).

CEI EN 62305 (CEI 81-10): protezione contro i fulmini.

CEI 81-3: valori medi del numero di fulmini a terra per anno e per chilometro quadrato.

CEI 20-19: cavi isolati con gomma con tensione nominale non superiore a 450/750 V.

CEI 20-20: cavi isolati con polivinilcloruro con tensione nominale non superiore a 450/750 V.

CEI 13-4: sistemi di misura dell'energia elettrica - Composizione, precisione e verifica.

CEI UNI EN ISO/IEC 17025:2008: requisiti generali per la competenza dei laboratori di prova e di taratura.

Delibere AEEGSI

Connessione

Delibera ARG/ELT n. 33-08: condizioni tecniche per la connessione alle reti di distribuzione dell'energia elettrica a tensione nominale superiore ad 1 kV.

Deliberazione 84/2012/R/EEL: interventi urgenti relativi agli impianti di produzione di energia elettrica, con particolare riferimento alla generazione distribuita, per garantire la sicurezza del sistema elettrico nazionale.

Deliberazione 344/2012/R/EEL: approvazione della modifica all'allegato A70 e dell'allegato A72 al codice di rete; modifica della deliberazione dell'autorità per l'energia elettrica e il gas 8 marzo 2012, 84/2012/R/EEL.

Ritiro dedicato

Delibera ARG/ELT n. 280-07: modalità e condizioni tecnico-economiche per il ritiro dell'energia elettrica ai sensi dell'articolo 13, commi 3 e 4, del decreto legislativo 29 dicembre 2003, n. 387-03, e del comma 41 della legge 23 agosto 2004, n. 239-04.

Servizio di misura

Delibera ARG/ELT n. 88-07: disposizioni in materia di misura dell'energia elettrica prodotta da impianti di generazione.

TIME (2016-2019) - Allegato B Delibera 654/2015/R/EEL: testo integrato delle disposizioni per l'erogazione del servizio di misura dell'energia elettrica.

Tariffe

Delibera 111-06: condizioni per l'erogazione del pubblico servizio di dispacciamento dell'energia elettrica sul territorio nazionale e per l'approvvigionamento delle relative risorse su base di merito economico, ai sensi degli articoli 3 e 5 del decreto legislativo 16 marzo 1999, n. 79.

TIV - Allegato A - Deliberazione 19 luglio 2012 301/2012/R/EEL (valido dal 01-01-2016)

TIT (2016-2019) - Allegato A Delibera 654/2015/R/EEL: testo integrato delle disposizioni per l'erogazione dei servizi di trasmissione e distribuzione dell'energia elettrica

TIC (2016-2019) - Allegato C Delibera 654/2015/R/EEL: testo integrato delle condizioni economiche per l'erogazione del servizio di connessione

TIS - Allegato A Deliberazione ARG/ELT 107-09 (valido dal 01-01-2016): testo integrato delle disposizioni dell'autorità per l'energia elettrica e il gas in ordine alla regolazione delle partite fisiche ed economiche del servizio di dispacciamento (Settlement)

TICA

Delibera ARG/ELT n. 99-08 TICA: testo integrato delle condizioni tecniche ed economiche per la connessione alle reti elettriche con obbligo di connessione di terzi degli impianti di produzione di energia elettrica (Testo integrato delle connessioni attive ceTICA).

Deliberazione ARG/ELT 124/10: Istituzione del sistema di Gestione delle Anagrafiche Uniche Degli Impianti di produzione e delle relative unità (GAUDÌ) e razionalizzazione dei flussi informativi tra i vari soggetti operanti nel settore della produzione di energia elettrica.

Deliberazione ARG/ELT n. 181-10: attuazione del decreto del Ministro dello Sviluppo Economico, di concerto con il Ministro dell'Ambiente e della Tutela del Territorio e del Mare 6 agosto 2010, ai fini dell'incentivazione della produzione di energia elettrica mediante conversione fotovoltaica della fonte solare.

TISP

Delibera ARG/ELT n. 188-05: definizione del soggetto attuatore e delle modalità per l'erogazione delle tariffe incentivanti degli impianti fotovoltaici, in attuazione dell'articolo 9 del decreto del Ministro delle attività produttive, di concerto con il Ministro dell'ambiente e della tutela del territorio, 28 luglio 2005 con modifiche e integrazioni introdotte con le delibere n. 40/06, n. 260/06, 90/07, ARG/ELT 74/08 e ARG/ELT 1/09.

TISP - Delibera ARG/ELT n. 74-08: testo integrato delle modalità e delle condizioni tecnico-economiche per lo scambio sul posto.

Delibera ARG/ELT n.1-09: attuazione dell'articolo 2, comma 153, della legge n. 244/07 e dell'articolo 20 del decreto ministeriale 18 dicembre 2008, in materia di incentivazione dell'energia elettrica prodotta da fonti rinnovabili tramite la tariffa fissa onnicomprensiva e di scambio sul posto.

TISP 2013 Deliberazione n. 570/2012/R/EFR - Testo integrato delle modalità e delle condizioni tecnico-economiche per l'erogazione del servizio di scambio sul posto: condizioni per l'anno 2013.

TISP 2014 - Allegato A alla deliberazione 570/2012/R/EEL: testo integrato delle modalità e delle condizioni tecnico-economiche per l'erogazione del servizio di scambio sul posto con integrazioni e modifiche apportate con deliberazioni 578/2013/R/EEL, 614/2013/R/EEL e 612/2014/R/EEL.

Documento per la consultazione 488/2013/R/EFR: scambio sul posto: aggiornamento del limite massimo per la restituzione degli oneri generali di sistema nel caso di impianti alimentati da fonti rinnovabili.

TEP

Delibera EEN 3/08: aggiornamento del fattore di conversione dei kWh in tonnellate equivalenti di petrolio connesso al meccanismo dei titoli di efficienza energetica.

TIQE

Deliberazione - ARG/ELT 198-11: testo integrato della qualità dei servizi di distribuzione e misura dell'energia elettrica per il periodo di regolazione 2012-2015.

Agenzia delle Entrate

Circolare n. 46/E del 19/07/2007: articolo 7, comma 2, del decreto legislativo 29 dicembre 2003, n. 387 œDisciplina fiscale degli incentivi per gli impianti fotovoltaici.

Circolare n. 66 del 06/12/2007: tariffa incentivante art. 7, c. 2, del decreto legislativo 29 dicembre 2003, n. 387. Circolare n. 46/E del 19 luglio 2007 - Precisazione.

Risoluzione n. 21/E del 28/01/2008: istanza di Interpelloce Aliquota Iva applicabile alle prestazioni di servizio energiann. 103) e 122) della Tabella A, Parte terza, d.P.R. 26/10/1972, n. 633 - Alfa S.p.A.

Risoluzione n. 22/E del 28/01/2008: istanza di Interpello - Art. 7, comma 2, d. lgs. vo n. 387 del 29 dicembre 2003.

Risoluzione n. 61/E del 22/02/2008: trattamento fiscale ai fini dell'imposta sul valore aggiunto e dell'applicazione della ritenuta di acconto della tariffa incentivante per la produzione di energia fotovoltaica di cui all'art. 7, comma 2, del d.lgs. n. 387 del 29 dicembre 2003.

Circolare n. 38/E del 11/04/2008: articolo 1, commi 271-279, della legge 27 dicembre 2006, n. 296 ccCredito d'imposta per acquisizioni di beni strumentali nuovi in aree svantaggiate.

Risoluzione n. 13/E del 20/01/2009: istanza di interpello ceArt. 11 Legge 27 luglio 2000, n. 212 ceGestore dei Servizi Elettrici, SPA oppr 26 ottobre 1972, n. 633 e Dpr 22 dicembre 1986, n. 917.

Risoluzione n. 20/E del 27/01/2009: interpello - Art. 11 Legge 27 luglio 2000, n. 212 - ALFA cært.9 , DM 2 febbraio 2007.

Circolare del 06/07/2009 n. 32/E: imprenditori agricoli - produzione e cessione di energia elettrica e calorica da fonti rinnovabili agroforestali e fotovoltaiche nonché di carburanti e di prodotti chimici derivanti prevalentemente da prodotti del fondo: aspetti fiscali. Articolo 1, comma 423, della legge 23 dicembre 2005, n. 266 e successive modificazioni.

Risoluzione del 25/08/2010 n. 88/E: interpello - Gestore Servizi Energetici - GSE - articolo 2 della legge 24 dicembre 2007, n. 244.

Risoluzione del 04/04/2012 n. 32/E: trattamento fiscale della produzione di energia elettrica da parte dell'ente pubblico mediante impianti fotovoltaici cescambio sul posto e scambio a distanza.

Risoluzione del 10/08/2012 n. 84/E :interpello - Art. 28 del DPR 29 settembre 1973, n.600 (Impianti FTV su Condomini).

Risoluzione del 06/12/2012: interpello - Gestore Servizi Energetici - GSE - Fiscalità V Conto Energia.

Risoluzione del 02/04/2013 n. 22/E: applicabilità della detrazione fiscale del 36 per cento, prevista dall'art. 16-bis del TUIR, alle spese di acquisto e installazione di un impianto fotovoltaico diretto alla produzione di energia elettrica.

Circolare del 19/12/2013 n. 36/E: impianti fotovoltaici ce Profili catastali e aspetti fiscali.

Risoluzione del 15/10/2015 n. 86/E: tassazione forfettaria del reddito derivante dalla produzione e dalla cessione di energia elettrica da impianti fotovoltaici - Art. 22 del decreto legge n. 66 del 2014.

Agenzia del Territorio

Risoluzione n. 3/2008: accertamento delle centrali elettriche a pannelli fotovoltaici.

Nota Prot. n. 31892 - Accertamento degli immobili ospitanti gli impianti fotovoltaici.

GSE

<u>SSP</u>

Disposizioni Tecniche di Funzionamento.

Regole Tecniche sulla Disciplina dello scambio sul posto.

Ritiro dedicato

Prezzi medi mensili per fascia oraria e zona di mercato.

Prezzi minimi garantiti.

V Conto Energia

 $Guida\ alle\ applicazioni\ innovative\ finalizzate\ all'integrazione\ ar\ chitettonica\ del\ fotovoltaico\ -\ Agosto\ 2012$

Catalogo impianti fotovoltaici integrati con caratteristiche innovative - Agosto~2012

Regole applicative per l'iscrizione ai registri e per l'accesso alle tariffe incentivanti - 7 agosto 2012

Bando pubblico per l'iscrizione al Registro degli impianti fotovoltaici

Guida all'utilizzo dell'applicazione web per la richiesta di iscrizione al Registro - 20 agosto 2012

Guida all'utilizzo dell'applicazione web FTV - SR - 27 agosto 2012

Chiarimenti sulla definizione di edificio energeticamente certificabile e sulle Certificazioni/Attestazioni riguardanti i moduli fotovoltaici ed i gruppi di conversione (inverter) necessarie per l'ammissione alle tariffe incentivanti - 6 settembre 2012

SEU

Regole applicative per la presentazione della richiesta e il conseguimento della qualifica di SEU e SEESEU.

TERNA

Gestione transitoria dei flussi informativi per GAUDÌ.

GAUDÌ - Gestione anagrafica unica degli impianti e delle unità di produzione.

FAQ GAUDÌ

Requisiti minimi per la connessione e l'esercizio in parallelo con la rete AT (Allegato A.68).

Criteri di connessione degli impianti di produzione al sistema di difesa di Terna (Allegato A.69).

Regolazione tecnica dei requisiti di sistema della generazione distribuita (Allegato A.70).

I riferimenti di cui sopra possono non essere esaustivi. Ulteriori disposizioni di legge, norme e deliberazioni in materia, anche se non espressamente richiamati, si considerano applicabili.

DEFINIZIONI

Definizioni - Rete Elettrica

Distributore

Persona fisica o giuridica responsabile dello svolgimento di attività e procedure che determinano il funzionamento e la pianificazione della rete elettrica di distribuzione di cui è proprietaria.

Rete del distributore

Rete elettrica di distribuzione AT, MT e BT alla quale possono collegarsi gli utenti.

Rete BT del distributore

Rete a tensione nominale superiore a 50 V fino a 1.000 V compreso in c.a.

Rete MT del distributore

Rete a tensione nominale superiore a 1.000 V in c.a. fino a 30.000 V compreso.

Utente

Soggetto che utilizza la rete del distributore per cedere o acquistare energia elettrica.

Gestore di rete

Il Gestore di rete è la persona fisica o giuridica responsabile, anche non avendone la proprietà, della gestione della rete elettrica con obbligo di connessione di terzi a cui è connesso l'impianto (Deliberazione dell'AEEG n. 28/06).

Gestore Contraente

Il Gestore Contraente è l'impresa distributrice competente nell'ambito territoriale in cui è ubicato l'impianto fotovoltaico (Deliberazione dell'AEEG n. 28/06).

Definizioni - Impianto Fotovoltaico

Angolo di inclinazione (o di Tilt)

Angolo di inclinazione del piano del dispositivo fotovoltaico rispetto al piano orizzontale (da IEC/TS 61836).

Angolo di orientazione (o di azimut)

L'angolo di orientazione del piano del dispositivo fotovoltaico rispetto al meridiano corrispondente. In pratica, esso misura lo scostamento del piano rispetto all'orientazione verso SUD (per i siti nell'emisfero terrestre settentrionale) o verso NORD (per i siti nell'emisfero meridionale). Valori positivi dell'angolo di azimut indicano un orientamento verso ovest e valori negativi indicano un orientamento verso est (CEI EN 61194).

BOS (Balance Of System o Resto del sistema)

Insieme di tutti i componenti di un impianto fotovoltaico, esclusi i moduli fotovoltaici.

Generatore o Campo fotovoltaico

Insieme di tutte le schiere di moduli fotovoltaici in un sistema dato (CEI EN 61277).

Cella fotovoltaica

Dispositivo fotovoltaico fondamentale che genera elettricità quando viene esposto alla radiazione solare (CEI EN 60904-3). Si tratta sostanzialmente di un diodo con grande superficie di giunzione, che esposto alla radiazione solare si comporta come un generatore di corrente, di valore proporzionale alla radiazione incidente su di esso.

Condizioni di Prova Standard (STC)

Comprendono le seguenti condizioni di prova normalizzate (CEI EN 60904-3):

ceTemperatura di cella: 25 °C ±2 °C.

cel rraggiamento: 1000 W/m², con distribuzione spettrale di riferimento (massa d'aria AM 1,5).

Condizioni nominali

Sono le condizioni di prova dei moduli fotovoltaici, piani o a concentrazione solare, nelle quali sono rilevate le prestazioni dei moduli stessi, secondo protocolli definiti dalle pertinenti norme CEI (Comitato elettrotecnico italiano) e indicati nella Guida CEI 82- 25 e successivi aggiornamenti.

Costo indicativo cumulato annuo degli incentivi o costo indicativo cumulato degli incentivi

Sommatoria degli incentivi, gravanti sulle tariffe dell'energia elettrica, riconosciuti a tutti gli impianti alimentati da fonte fotovoltaica in attuazione del presente decreto e dei precedenti provvedimenti di incentivazione; ai fini della determinazione del costo generato dai provvedimenti antecedenti al presente decreto, si applicano le modalità previste dal DM 5 maggio 2011; ai fini della determinazione dell'ulteriore costo generato dal presente decreto:

- i) viene incluso il costo degli impianti ammessi a registro in posizione utile. A tali impianti, fino **all'entrata** in esercizio, è attribuito un incentivo pari alla differenza fra la tariffa incentivante spettante alla data di entrata in esercizio dichiarata dal produttore e il prezzo medio zonale nell'anno precedente a quello di richiesta di iscrizione;
- ii) l'incentivo attribuibile agli impianti entrati in esercizio che accedono ad incentivi calcolati per differenza rispetto a tariffe incentivanti costanti, ivi inclusi gli impianti che accedono a tariffe fisse onnicomprensive, è calcolato per differenza con il valore del prezzo zonale nell'anno precedente a quello in corso;
- iii) la producibilità annua netta incentivabile è convenzionalmente fissata in 1200 kWh/kW per tutti gli impianti.

Data di entrata in esercizio di un impianto fotovoltaico

Data in cui si effettua il primo funzionamento dell'impianto in parallelo con il sistema elettrico, comunicata dal gestore di rete e dallo stesso registrata in GAUDÌ.

Dispositivo del generatore

Dispositivo installato a valle dei terminali di ciascun generatore dell'impianto di produzione (CEI 11-20).

Dispositivo di interfaccia

Dispositivo installato nel punto di collegamento della rete di utente in isola alla restante parte di rete del produttore, sul quale agiscono le protezioni d'interfaccia (CEI 11-20); esso separa l'impianto di produzione dalla rete di utente non in isola e quindi dalla rete del Distributore; esso comprende un organo di interruzione, sul quale agisce la protezione di interfaccia.

Dispositivo generale

Dispositivo installato all'origine della rete del produttore e cioè immediatamente a valle del punto di consegna dell'energia elettrica dalla rete pubblica (CEI 11-20).

Effetto fotovoltaico

Fenomeno di conversione diretta della radiazione elettromagnetica (generalmente nel campo della luce visibile e, in particolare, della radiazione solare) in energia elettrica mediante formazione di coppie elettrone-lacuna all'interno di semiconduttori, le quali determinano la creazione di una differenza di potenziale e la conseguente circolazione di corrente se collegate ad un circuito esterno.

Efficienza nominale di un generatore fotovoltaico

Rapporto fra la potenza nominale del generatore e l'irraggiamento solare incidente sull'area totale dei moduli, in STC; detta efficienza può essere approssimativamente ottenuta mediante rapporto tra la potenza nominale del generatore stesso (espressa in kWp) e la relativa superficie (espressa in m²), intesa come somma dell'area dei moduli.

Efficienza nominale di un modulo fotovoltaico

Rapporto fra la potenza nominale del modulo fotovoltaico e il prodotto dell'irraggiamento solare standard (1000 W/m²) per la superficie complessiva del modulo, inclusa la sua cornice.

Efficienza operativa media di un generatore fotovoltaico

Rapporto tra l'energia elettrica prodotta in c.c. dal generatore fotovoltaico e l'energia solare incidente sull'area totale dei moduli, in un determinato intervallo di tempo.

Efficienza operativa media di un impianto fotovoltaico

Rapporto tra l'energia elettrica prodotta in c.a. dall'impianto fotovoltaico e l'energia solare incidente sull'area totale dei moduli, in un determinato intervallo di tempo.

Energia elettrica prodotta da un impianto fotovoltaico

L'energia elettrica (espressa in kWh) misurata all'uscita dal gruppo di conversione della corrente continua in corrente alternata, resa disponibile alle utenze elettriche e/o immessa nella rete del distributore.

Gruppo di conversione della corrente continua in corrente alternata (o Inverter)

Apparecchiatura, tipicamente statica, impiegata per la conversione in corrente alternata della corrente continua prodotta dal generatore fotovoltaico.

Impianto (o Sistema) fotovoltaico

Impianto di produzione di energia elettrica, mediante l'effetto fotovoltaico; esso è composto dall'insieme di moduli fotovoltaici (Campo fotovoltaico) e dagli altri componenti (BOS), tali da consentire di produrre energia elettrica e fornirla alle utenze elettriche e/o di immetterla nella rete del distributore.

Impianto (o Sistema) fotovoltaico collegato alla rete del distributore

Impianto fotovoltaico in grado di funzionare (ossia di fornire energia elettrica) quando è collegato alla rete del distributore.

Impianto fotovoltaico a concentrazione

Un impianto di produzione di energia elettrica mediante conversione diretta della radiazione solare, tramite l'effetto fotovoltaico; esso è composto principalmente da un insieme di moduli in cui la luce solare è concentrata, tramite sistemi ottici, su celle fotovoltaiche, da uno o più gruppi di conversione della corrente continua in corrente alternata e da altri componenti elettrici minori; il «fattore di concentrazione di impianto fotovoltaico a concentrazione» è il valore minimo fra il fattore di concentrazione geometrico e quello energetico, definiti e calcolati sulla base delle procedure indicate nella Guida CEI 82-25.

Impianto fotovoltaico integrato con caratteristiche innovative

Impianto fotovoltaico che utilizza moduli non convenzionali e componenti speciali, sviluppati specificatamente per sostituire elementi architettonici, e che risponde ai requisiti costruttivi e alle modalità di installazione indicate.

Impianto fotovoltaico con innovazione tecnologica

Impianto fotovoltaico che utilizza moduli e componenti caratterizzati da significative innovazioni tecnologiche.

Impianto fotovoltaico realizzato su un edificio

Impianto i cui moduli sono posizionati sugli edifici secondo specifiche modalità individuate.

Impianti con componenti principali realizzati unicamente all'interno di un Paese che risulti membro dell'UE/SEE

A prescindere dall'origine delle materie prime impiegate, sono gli impianti fotovoltaici e gli impianti fotovoltaici integrati con caratteristiche innovative che utilizzano moduli fotovoltaici e gruppi di conversione realizzati unicamente all'interno di un Paese che risulti membro dell'Unione Europea o che sia parte dell'Accordo sullo Spazio Economico

Europeo - SEE (Islanda, Liechtenstein e Norvegia), nel rispetto dei seguenti requisiti:

- 1. per i moduli fotovoltaici è stato rilasciato l'attestato di controllo del processo produttivo in fabbrica (Factory Inspection Attestation, come indicata nella Guida CEI 82-25 e successivi aggiornamenti) ai fini dell'identificazione dell'origine del prodotto, a dimostrazione che almeno le seguenti lavorazioni sono state eseguite all'interno dei predetti Paesi: a) moduli in silicio cristallino: stringatura celle, assemblaggio/laminazione e test elettrici; b) moduli fotovoltaici in film sottile (thin film): processo di deposizione, assemblaggio/laminazione e test elettrici; c) moduli in film sottile su supporto flessibile: stringatura celle, assemblaggio/laminazione e test elettrici; d) moduli non convenzionali e componenti speciali: oltre alle fasi di lavorazione previste per i punti a), b) e c), a seconda della tipologia di modulo, anche le fasi di processo che determinano la non convenzionalità e/o la specialità; in questo caso, all'interno del Factory Inspection Attestation va resa esplicita anche la tipologia di non convenzionalità e/o la specialità.
- 2. Per i gruppi di conversione è stato rilasciato, da un ente di certificazione accreditato EN 45011 per le prove su tali componenti, l'attestato di controllo del processo produttivo in fabbrica ai fini dell'identificazione dell'origine del prodotto, a dimostrazione che almeno le seguenti lavorazioni sono state eseguite all'interno dei predetti Paesi: progettazione, assemblaggio, misure/collaudo.

Impianto - Serra fotovoltaica

Struttura, di altezza minima dal suolo pari a 2 metri, nella quale i moduli fotovoltaici costituiscono gli elementi costruttivi della copertura o delle pareti di un manufatto adibito, per tutta la durata dell'erogazione della tariffa incentivante alle coltivazioni agricole o alla floricoltura. La struttura della serra, in metallo, legno o muratura, deve essere fissa, ancorata al terreno e con chiusure fisse o stagionalmente rimovibili;

Impianto fotovoltaico con moduli collocati a terra

Impianto per il quale i moduli non sono fisicamente installati su edifici, serre, barriere acustiche o fabbricati rurali, né su pergole, tettoie e pensiline, per le quali si applicano le definizioni di cui all'articolo 20 del DM 6 agosto 2010.

Inseguitore della massima potenza (MPPT)

Dispositivo di comando dell'inverter tale da far operare il generatore fotovoltaico nel punto di massima potenza. Esso può essere realizzato anche con un convertitore statico separato dall'inverter, specie negli impianti non collegati ad un sistema in c.a.

Energia radiante

Energia emessa, trasportata o ricevuta in forma di onde elettromagnetiche.

Irradiazione

Rapporto tra l'energia radiante che incide su una superficie e l'area della medesima superficie.

Irraggiamento solare

Intensità della radiazione elettromagnetica solare incidente su una superficie di area unitaria. Tale intensità è pari all'integrale della potenza associata a ci ascun valore di frequenza dello spettro solare (CEI EN 60904-3).

Modulo fotovoltaico

Il più piccolo insieme di celle fotovoltaiche interconnesse e protette dall'ambiente circostante (CEI EN 60904-3).

Modulo fotovoltaico in c.a.

Modulo fotovoltaico con inverter integrato; la sua uscita è solo in corrente alternata: non è possibile l'accesso alla parte in continua (IEC 60364-7-712).

Pannello fotovoltaico

Gruppo di moduli fissati insieme, preassemblati e cablati, destinati a fungere da unità installabili (CEI EN 61277).

Perdite per mismatch (o per disaccoppiamento)

Differenza fra la potenza totale dei dispositivi fotovoltaici connessi in serie o in parallelo e la somma delle potenze di ciascun dispositivo, misurate separatamente nelle stesse condizioni. Deriva dalla differenza fra le caratteristiche tensione corrente dei singoli dispositivi e viene misurata in W o in percentuale rispetto alla somma delle potenze (da IEC/TS 61836).

Potenza nominale (o massima, o di picco, o di targa) di un generatore fotovoltaico

Potenza elettrica (espressa in Wp), determinata dalla somma delle singole potenze nominali (o massime o di picco o di targa) di ciascun modulo costituente il generatore fotovoltaico, misurate in Condizioni di Prova Standard (STC).

Potenza nominale (o massima, o di picco, o di targa) di un impianto fotovoltaico

Per prassi consolidata, coincide con la potenza nominale (o massima, o di picco, o di targa) del suo generatore fotovoltaico.

Potenza nominale (o massima, o di picco, o di targa) di un modulo fotovoltaico

Potenza elettrica (espressa in Wp) del modulo, misurata in Condizioni di Prova Standard (STC).

Potenza effettiva di un generatore fotovoltaico

Potenza di picco del generatore fotovoltaico (espressa in Wp), misurata ai morsetti in corrente continua dello stesso e riportata alle Condizioni di Prova Standard (STC) secondo definite procedure (CEI EN 61829).

Potenza prodotta da un impianto fotovoltaico

Potenza di un impianto fotovoltaico (espressa in kW) misurata all'uscita dal gruppo di conversione della corrente continua in corrente alternata, resa disponibile alle utenze elettriche e/o immessa nella rete del distributore.

Potenziamento

Intervento tecnologico, realizzato nel rispetto dei requisiti e in conformità alle disposizioni del presente decreto, eseguito su un impianto entrato in esercizio da almeno tre anni, consistente in un incremento della potenza nominale dell'impianto, mediante aggiunta di una o più stringhe di moduli fotovoltaici e dei relativi inverter, la cui potenza

nominale complessiva sia non inferiore a 1 kW, in modo da consentire una produzione aggiuntiva dell'impianto medesimo, come definita alla lettera l). L'energia incentivata a seguito di un potenziamento è la produzione aggiuntiva dell'impianto moltiplicata per un coefficiente di gradazione pari a 0.8.

Produzione netta di un impianto

Produzione lorda diminuita dell'energia elettrica assorbita dai servizi ausiliari di centrale, delle perdite nei trasformatori principali e delle perdite di linea fino al punto di consegna dell'energia alla rete elettrica.

Produzione lorda di un impianto

Per impianti connessi a reti elettriche in media o alta tensione, l'energia elettrica misurata all'uscita del gruppo di conversione della corrente continua in corrente alternata in bassa tensione, prima che essa sia resa disponibile alle eventuali utenze elettriche del soggetto responsabile e prima che sia effettuata la trasformazione in media o alta tensione per l'immissione nella rete elettrica; per impianti connessi a reti elettriche in bassa tensione, l'energia elettrica misurata all'uscita del gruppo di conversione della corrente continua in corrente alternata, ivi incluso l'eventuale trasformatore di isolamento o adattamento, prima che essa sia resa disponibile alle eventuali utenze elettriche del soggetto responsabile e immessa nella rete elettrica.

Produzione netta aggiuntiva di un impianto

Aumento espresso in kWh, ottenuto a seguito di un potenziamento, dell'energia elettrica netta prodotta annualmente e misurata attraverso l'installazione di un gruppo di misura dedicato.

Punto di connessione

Punto della rete elettrica, come definito dalla deliberazione dell'Autorità per l'energia elettrica e il gas ARG/elt 99/08 e sue successive modifiche e integrazioni.

Radiazione solare

Integrale dell'irraggiamento solare (espresso in kWh/m²), su un periodo di tempo specificato (CEI EN 60904-3).

Rifacimento totale

Intervento impiantistico-tecnologico eseguito su un impianto entrato in esercizio da almeno venti anni che comporta la sostituzione con componenti nuovi di almeno tutti i moduli e del gruppo di conversione della corrente continua in corrente alternata.

Servizio di scambio sul posto

Servizio di cui all'articolo 6 del decreto legislativo 29 dicembre 2003, n. 387 e successive modifiche ed integrazioni.

Sezioni

- "....l'impianto fotovoltaico può essere composto anche da sezioni di impianto a condizione che:
- a) all'impianto corrisponda un solo soggetto responsabile;
- b) ciascuna sezione dell'impianto sia dotata di autonoma apparecchiatura per la misura dell'energia elettrica prodotta ai sensi delle disposizioni di cui alla deliberazione n. 88/07;
- c) il soggetto responsabile consenta al soggetto attuatore l'acquisizione per via telematica delle misure rilevate dalle apparecchiature per la misura di cui alla precedente lettera b), qualora necessaria per gli adempimenti di propria competenza. Tale acquisizione può avvenire anche per il tramite dei gestori di rete sulla base delle disposizioni di cui all'articolo 6, comma 6.1, lettera b), della deliberazione n. 88/07;
- d) a ciascuna sezione corrisponda una sola tipologia di integrazione architettonica di cui all'articolo 2, comma 1, lettere da b1) a b3) del decreto ministeriale 19 febbraio 2007, ovvero corrisponda la tipologia di intervento di cui all'articolo 6, comma 4, lettera c), del medesimo decreto ministeriale;
- e) la data di entrata in esercizio di ciascuna sezione sia univocamente definibile...." (ARG-elt 161/08).

Soggetto responsabile

Il soggetto responsabile è la persona fisica o giuridica responsabile della realizzazione e dell'esercizio dell'impianto fotovoltaico.

Sottosistema fotovoltaico

Parte del sistema o impianto fotovoltaico; esso è costituito da un gruppo di conversione c.c./c.a. e da tutte le stringhe fotovoltaiche che fanno capo ad esso.

Stringa fotovoltaica

Insieme di moduli fotovoltaici collegati elettricamente in serie per ottenere la tensione d'uscita desiderata.

Temperatura nominale di lavoro di una cella fotovoltaica (NOCT)

Temperatura media di equilibrio di una cella solare all'interno di un modulo posto in particolari condizioni ambientali (irraggiamento: 800 W/m², temperatura ambiente: 20 °C, velocità del vento: 1 m/s), elettricamente a circuito aperto ed installato su un telaio in modo tale che a mezzogiorno solare i raggi incidano normalmente sulla sua superficie esposta (CEI EN 60904-3).

Articolo 2, comma 2 (D. Lgs. n° 79 del 16-03-99)

Autoproduttore è la persona fisica o giuridica che produce energia elettrica e la utilizza in misura non inferiore al 70% annuo per uso proprio ovvero per uso delle società controllate, della società controllante e delle società controllate dalla medesima controllante, nonché per uso dei soci delle società cooperative di produzione e distribuzione dell'energia elettrica di cui all'articolo 4, numero 8, della legge 6 dicembre 1962, n. 1643, degli appartenenti ai consorzi o società consortili costituiti per la produzione di energia elettrica da fonti energetiche rinnovabili e per gli usi di fornitura autorizzati nei siti industriali anteriormente alla data di entrata in vigore del decreto.

Art. 9, comma 1 (D. Lgs. n°79 del 16-03-99) L'attività di distribuzione

Le imprese distributrici hanno l'obbligo di connettere alle proprie reti tutti i soggetti che ne facciano richiesta, senza compromettere la continuità del servizio e purché siano rispettate le regole tecniche nonché le deliberazioni emanate dall'Autorità per l'energia elettrica e il gas in materia di tariffe, contributi ed oneri. Le imprese distributrici operanti alla data di entrata in vigore del presente decreto, ivi comprese, per la quota diversa dai propri soci, le società cooperative di produzione e distribuzione di cui all'articolo 4, numero 8, della legge 6 dicembre 1962, n. 1643, continuano a svolgere il servizio di distribuzione sulla base di concessioni rilasciate entro il 31 marzo 2001 dal Ministro dell'industria, del commercio e dell'artigianato e aventi scadenza il 31 dicembre 2030. Con gli stessi provvedimenti sono individuati i responsabili della gestione, della manutenzione e, se necessario, dello sviluppo delle reti di distribuzione e dei relativi dispositivi di interconnessione, che devono mantenere il segreto sulle informazioni commerciali riservate; le concessioni prevedono, tra l'altro, misure di incremento dell'efficienza energetica degli usi finali di energia secondo obiettivi quantitativi determinati con decreto del Ministro dell'industria, del commercio e dell'artigianato di concerto con il Ministro dell'ambiente entro novanta giorni dalla data di entrata in vigore del presente decreto.

Definizione di Edificio: "...un sistema costituito dalle strutture edilizie esterne che delimitano uno spazio di volume definito, dalle strutture interne che ripartiscono detto volume e da tutti gli impianti e dispositivi tecnologici che si trovano stabilmente al suo interno; la superficie esterna che delimita un edificio può confinare con tutti o alcuni di questi elementi: l'ambiente esterno, il terreno, altri edifici; il termine può riferirsi a un intero edificio ovvero a parti di edificio progettate o ristrutturate per essere utilizzate come unità immobiliari a se **stanti**". (D. Lgs. n. 192 del 19 agosto 2005, articolo 2).

Definizione di Ente locale: ai sensi del Testo Unico delle Leggi sull'ordinamento degli Enti Locali, si intendono per enti locali i Comuni, le Province, le Città metropolitane, le Comunità montane, le Comunità isolane e le Unioni di comuni. Le norme sugli Enti Locali si applicano, altresì, salvo diverse disposizioni, ai consorzi cui partecipano Enti Locali, con esclusione di quelli che gestiscono attività aventi rilevanza economica ed imprenditoriale e, ove previsto dallo statuto, dei consorzi per la gestione dei servizi sociali. La legge 99/09 ha esteso anche alle Regioni, a partire dal 15/08/09, tale disposizione.

SCHEDE TECNICHE MODULI

Modulo **M.0277**

DATI GENERALI

Marca	AMERISOLAR
Modello	AS-6M 330 50mm
Tipo materiale	Si monocristallino
Prezzo [/]	0.00

CARATTERISTICHE ELETTRICHE IN CONDIZIONI STC

Potenza di picco [W]	330.0 W		
Im [A]	8.80		
Isc [A]	9.21		
Efficienza [%]	17.01		
Vm [V]	37.50		
Voc [V]	46.10		

ALTRE CARATTERISTICHE ELETTRICHE

Coeff. Termico Voc [%/°C]	-0.3300
Coeff. Termico Isc [%/°C]	0.056
NOCT [°C]	45.0
Vmax [V]	1 000.00

CARATTERISTICHE MECCANICHE

CARATTERISTICITE PIECCARTETIE	
Lunghezza [mm]	1 956.00
Larghezza [mm]	992.00
Superficie [m ²]	1.940
Spessore [mm]	50.00
Peso [kg]	27.00
Numero celle	72

NOTE

Note

SCHEDE TECNICHE INVERTER

Inverter I.0464

DATI GENERALI

Marca	FRONIUS
Modello	SYMO 17.5-3-M
Tipo fase	Trifase
Prezzo [/]	0.00

INGRESSI MPPT

N	VMppt min [V]	VMppt max [V]	V max [V]	I max [A]
1	370.00	800.00	1 000.00	33.00
2	370.00	800.00	1 000.00	27.00

Max pot. FV [W] 17 500

PARAMETRI ELETTRICI IN USCITA

Potenza nominale [W]	17 500
Tensione nominale [V]	400
Rendimento max [%]	98.10
Distorsione corrente [%]	2
Frequenza [Hz]	50 / 60
Rendimento europeo [%]	97.80

CARATTERISTICHE MECCANICHE

Dimensioni LxPxH [mm]	720x510x225
Peso [kg]	43.40

NOTE

Note

INDICE

DATI GENERALI	2
Ubicazione impianto	2
Committente	2
Tecnico	2
PREMESSA	3
Valenza dell'iniziativa	3
Attenzione per l'ambiente	3
Risparmio sul combustibile	3
Emissioni evitate in atmosfera	3
Normativa di riferimento	3
SITO DI INSTALLAZIONE	4
Disponibilità di spazi sui quali installare l'impianto fotovoltaico	4
Disponibilità della fonte solare	4
Irradiazione giornaliera media mensile sul piano orizzontale	4
Fattori morfologici e ambientali	5
Ombreggiamento	5
Albedo	5
PROCEDURE DI CALCOLO	6
Criterio generale di progetto	6
Criterio di stima dell'energia prodotta	6
Criterio di verifica elettrica	6
DI MENSI ONAMENTO DELL'I MPI ANTO	8
Impianto Impianto Scuola Via Fogazzaro	8
Scheda tecnica dell'impianto	8
Energia prodotta	8
Specifiche degli altri componenti dell'impianto Impianto Scuola Via Fogazzaro	10
Posizionamento dei moduli	10
Cablaggio elettrico	10
Impianto di messa a terra	10
Sistema di accumulo	10
Protezioni	10
Note	11
Tavola Tavola 1	12
Sottoimpianto MPPT Sottoimpianto MPPT1	12
Scheda tecnica	12
Generatore MPPT Generatore MPPT1	12
Verifiche elettriche MPPT 1	13
Generatore MPPT Generatore MPPT2	13
Verifiche elettriche MPPT 2	14
Schema elettrico	15
Cavi	15
Quadri	15
Schema unifilare	20
NORMATIVA	21
Leggi e decreti	21
Norme Tecniche	22
Delibere AEEGSI	23
Agenzia delle Entrate	25

Agenzia del Territorio	25
GSE	25
TERNA	26
DEFINIZIONI	27
Definizioni - Rete Elettrica	27
Definizioni - Impianto Fotovoltaico	27
SCHEDE TECNICHE MODULI	32
Modulo M.0277	32
SCHEDE TECNICHE INVERTER	33
Inverter I.0464	33
INDICE	34

Dati di progetto

Costruzione

Descrizione Scuola Elementare e Materna Subiaco

Via Via Fogazzaro 3

Luogo Subiaco Data 23/05/2018

Committente

Ditta Comune di Subiaco
Persona di contatto Arch. Daniele Cardoli
Via Piazza Sant'Andrea 1

Luogo Subiaco

Email areatecnica@pec.comunesubiaco.com

Progettista

Ditta Arch. Roberto Simonelli
Persona di contatto Roberto Simonelli
Via Via Abruzzo 32
Luogo Guidonia Montecelio

Telefono 3394638008

Email r.simonelli@pec.archrm.it

Edificio

Posizione

Quota (s.l.m.) 408 m

Composizione

Geometria della copertura Tetto a falda singola

Lunghezza edificio14,00 mLunghezza gronda15,00 mLarghezza edificio5,87 mLunghezza falda7,30 mAltezza edificio9,75 m

Coptertura

Manto di coperturaTegola fiammingaInterasse travi principali0,50 mPendenza copertura20 °Larghezza travi principali80 mmSbalzo laterale0,50 mAltezza trave principale200 mm

Sbalzo colmo 0,50 m Sbalzo linea gronda 0,50 m

Carichi

EN 1991-1-3 / EN 1991-1-4

Carico neve

Zona carico neve 3

Topografia Normale

Carico di neve al suolo $s_k = 0.877 \text{ kN/m}^2$

Coefficiente di forma del carico neve $\mu_1 = 0,800$

Carico neve $s_i = 0.702 \text{ kN/m}^2$

Carico vento

Zona carico vento 3 Categoria di suolo Classe A

Distanza dalla costiera 60,00 km

Pressione da raffica di vento $q = 0.674 \text{ kN/m}^2$

Suddivisione copertura

Zona della copertura	minCpe	maxCpe	Press. vento [kN/m]	Depress. vento [kN/m]
Campo	-0,871	0,263	0,130	-0,431
Bordo linea gronda	-0,871	0,357	0,176	-0,431
Angolo linea gronda dest	-1,516	0,357	0,176	-0,750
Angolo colmo destra	-2,314	0,263	0,130	-1,144
Bordo colmo	-1,153	0,263	0,130	-0,570
Angolo linea gronda sinis	-1,516	0,357	0,176	-0,750
Angolo colmo sinistra	-2,314	0,263	0,130	-1,144

Peso proprio

Superfice del modulo	$A_{M} =$	1,94 m²
Peso del modulo	$G_M =$	27,00 kg
Peso proprio	$F_{M} =$	0,139 kN/m ²

Combinazioni di carico EN 1990

Coefficiente parziale di sicurezza per carichi permanenti	$\gamma_G =$	1,35
Coefficiente parziale di sicurezza per per il carico variabile principale	$\gamma_{Q1} =$	1,50
Coefficiente parziale di sicurezza per carico variabile non principale	$\gamma_{Qn} =$	1,50
Coefficiente parziale di sicurezza per combinazioni eccezionali	$\gamma_A =$	1,00
Coefficiente di combinazione del carico vento	$\psi_{0,W} =$	0,60
Coefficiente di combinazione del carico neve	$\psi_{0,S} =$	0,50

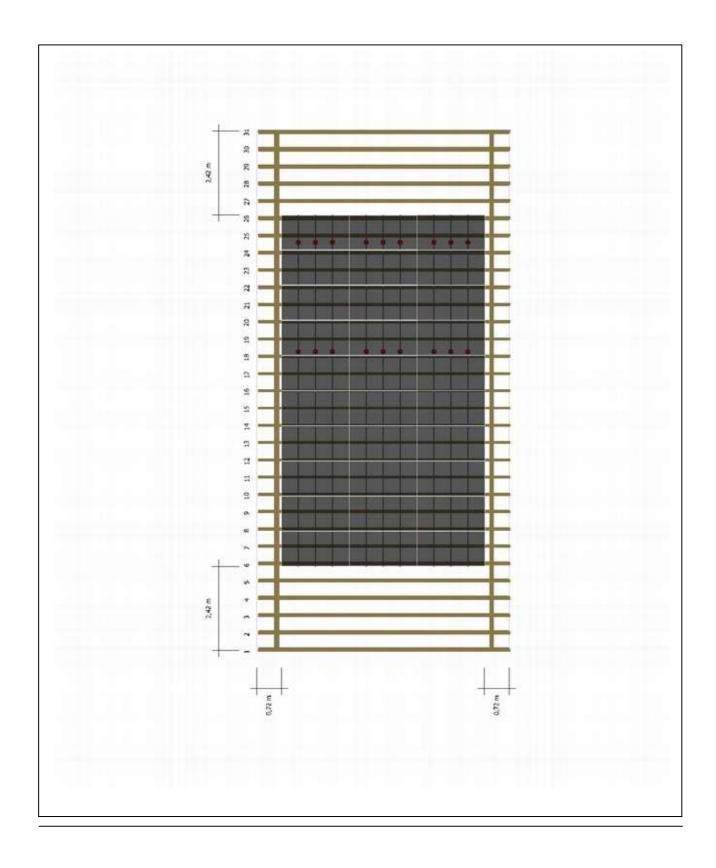
Combinazione di carico1: $E_d = 1,35 * G_k + 1,50 * S_k$

Combinazione di carico2: $E_d = 1,35 * G_k + 1,50 * W_{k,Pressione}$

Combinazione di carico3: $E_d = 1,35 * G_k + 1,50 * (W_{k,Pressione} + 0,5)$ Combinazione di carico4: $E_d = 1,35 * G_k + 1,50 * (S_k + 0,60 * W_{k,F})$

Combinazione di carico5: $E_d = G_k + A_d + 0,20 * W_{k,Pressione}$ Combinazione di carico6: $E_d = 1,00 G_k + 1,50 * W_{k,Depressione}$

Sollecitazioni massime


	Prova Stato limite ultimo [kN/m²]				Prova S	Stato limite	di esercizi	o [kN/m²]
Zona della copertura	$q_{\text{Pressione}, \perp}$	$q_{Pressione, /\!\!/}$	q _{Depressione,}	q _{Depressione, //}	$q_{\text{Pressione}, \perp}$	$q_{\text{Pressione},\#}$	q _{Depressione} ,	Jq _{Depressione, //}
Campo	1,269	0,397	-0,750	0,047	0,859	0,270	-0,456	0,047
Bordo linea gronda	1,326	0,397	-0,750	0,047	0,897	0,270	-0,456	0,047
Angolo linea gronda d	1,326	0,397	-1,402	0,047	0,897	0,270	-0,891	0,047
Angolo colmo destra	1,269	0,397	-2,208	0,047	0,859	0,270	-1,429	0,047
Bordo colmo	1,269	0,397	-1,034	0,047	0,859	0,270	-0,646	0,047
Angolo linea gronda s	1,326	0,397	-1,402	0,047	0,897	0,270	-0,891	0,047
Angolo colmo sinistra	1,269	0,397	-2,208	0,047	0,859	0,270	-1,429	0,047

Sollecitazioni massime (per metro di profilato) Strato superiore

	Prova Stato limite ultimo [kN/m]				Prova Stato limite di esercizio [kN/m]			
Zona della copertura	$q_{\text{Pressione}, \perp}$	q _{Pressione, //}	q _{Depressione} ,	q _{Depressione, //}	$q_{\text{Pressione}, \perp}$	q _{Pressione, //}	q _{Depressione, J}	q _{Depressione, //}
Campo	0,931	0,291	-0,550	0,034	0,630	0,198	-0,335	0,034
Bordo linea gronda	0,973	0,291	-0,550	0,034	0,658	0,198	-0,335	0,034
Angolo linea gronda d	0,973	0,291	-1,028	0,034	0,658	0,198	-0,653	0,034
Angolo colmo destra	0,931	0,291	-1,620	0,034	0,630	0,198	-1,048	0,034
Bordo colmo	0,931	0,291	-0,759	0,034	0,630	0,198	-0,474	0,034
Angolo linea gronda s	0,973	0,291	-1,028	0,034	0,658	0,198	-0,653	0,034
Angolo colmo sinistra	0,931	0,291	-1,620	0,034	0,630	0,198	-1,048	0,034

Dimensionamento fotovoltaico

Produttore	Standard	Lunghezza	1956 mm
Tipo di modulo	Standard	Larghezza	992 mm
Potenza	330 Wp	Altezza	50,0 mm
Pezzi	31 Unità	Peso del modulo	27,00 kg
Orientamento Moduli	verticale	Peso totale	837,00 kg
Orientamento Profilati	orizzontale	Potenza complessiva	10,23 kWp
Inflessione ammissibile	I/150		

Risultato

Fissaggio

Descrizione GANCIO PESANTE ALU.

PRESSOFUSO

Sollecitazione massima a pressione 2,05 kN

ortogonale

Sollecitazione massima a trazione -2,05 kN

ortogonale

Sollecitazione massima parallela 2,35 kN

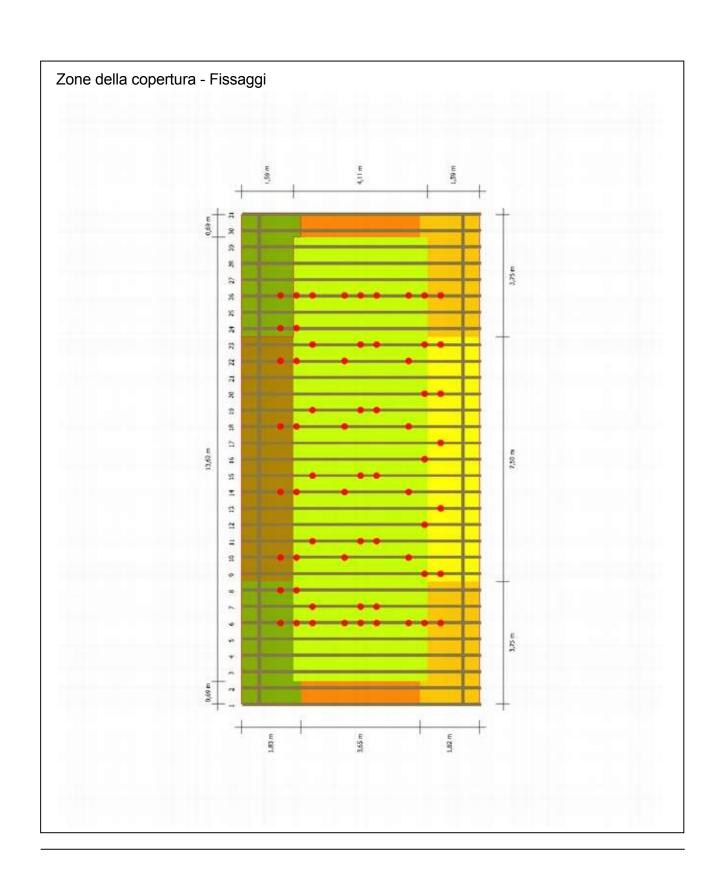
Profilati

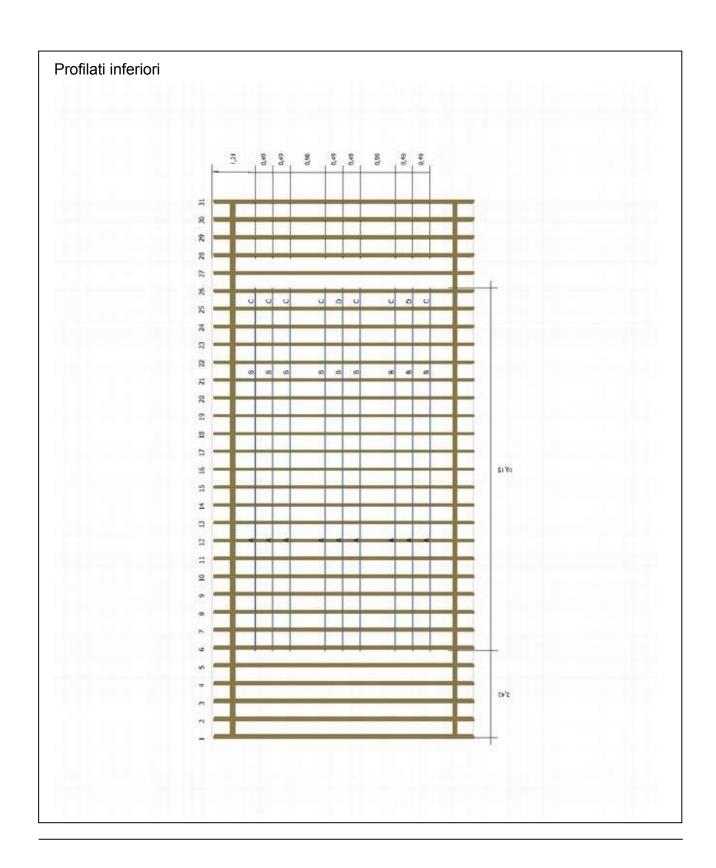
Descrizione PROFILATO SOLAR 70X44

Momento d'inerzia Iz 7,14 cm^4

Momento d'inerzia Iy 26,28 cm^4

Momento di resistenza Wz 3,26 cm^3


Momento di resistenza Wy 7,12 cm^3



Grado di utilizzo	Tensione	Inflessione	Inflessione	Lunghezza	Capacità di po
Zona della copertura	Profilato	Profilato	Trave a sbalzo	Trave a sbalzo	Fissaggio
Profilati inferiori					
Campo	66,7 %	62,2 %	0,0 %	18,8 % (7,5 cm)	94,1 %
Bordo linea gronda	68,5 %	63,4 %	0,0 %	0,0 % (0,0 cm)	98,3 %
Angolo linea gronda destra	39,8 %	26,7 %	0,0 %	18,8 % (7,5 cm)	78,0 %
Angolo colmo destra	24,0 %	10,3 %	0,0 %	18,8 % (7,5 cm)	81,9 %
Bordo colmo	66,7 %	62,2 %	0,0 %	0,0 % (0,0 cm)	94,1 %
Angolo linea gronda sinistra	39,8 %	26,7 %	0,0 %	18,8 % (7,5 cm)	78,0 %
Angolo colmo sinistra	24,0 %	10,3 %	0,0 %	18,8 % (7,5 cm)	81,9 %

Distanza di bordo delle viti 75,0 %

Sistema verificato

Lista materiale

Codice articolo	Descrizione	Pezzi	Peso	onfezion	Quantità
0865 997 81	GANCIO PESANTE ALU. RESSOFUSO	63	25,5 kg	20	80
0865 770 620	Profilo 70x44 6,2m	10	69,2 kg	4	12
0865 770 315	Profilo 70x44 3,15m	10	35,2 kg	4	12
0865 770 916	TAPPO DI CHIUSURA P/PROF. 70x40	18	0,4 kg	20	20
0865 799 965	CLIP CAVI P/PROFILATI FOTOV. NERO	125	0,2 kg	100	200
0865 770 910	ELEM. GIUNZ.P/PROFILATO SOLAR 70X44	18	4,3 kg	10	20
0865 799 913	GRAFFA TERM. 30-50MM PER PROF.SOLAR	18	1,0 kg	10	20
0865 799 905		81	3,9 kg	40	120
0181 808 100		126	3,2 kg	50	150
	utilizzo con gancio 0865 997 81				
0096 6 20	VITE TE UNI5739 TF INOX A2-70 M 6X20	20	0,1 kg	100	100
	utilizzo come protezione antislittamento				
0322 6	DADO ESAG. INOX A2 UNI5588 M 6	20	0,0 kg	300	300
	utilizzo come protezione antislittamento				
Peso sottostruttura			142,9 kg		
Peso moduli			837,0 kg		
Peso totale			979,9 kg		

Si mette in evidenza che il pannello copre un area 1,94 mq, ne segue che: l'impiato si sviluppa su un area 60,14 mq = 1,94 mq x 31 mod. il peso complessivo della struttura compresi i pannelli FV è di 979,9 kg quindi 979,9 kg / 60,14 = 16,30 kg per mq

16,30 kg = 0,16 kN 0,16 kN < 0,20 kN

Quindi l'impianto non è soggetto ad autorizzazione sismica ai sensi dell'art. 8 del regolamento regionale n. 14/2016